Majorana-like Coulomb spectroscopy in the absence of zero-bias peaks

  • Beenakker, C. Search for Majorana fermions in superconductors. Annu. Rev. of Condens. Matter Phys. 4113–136 (2013).

    Article ADS CAS Google Scholar

  • Aasen, D. et al. Milestones toward Majorana-based quantum computing. Phys. Rev. X 6031016 (2016).

    Google Scholar

  • Aguado, R. Majorana quasiparticles in condensed matter. Rev. Nuovo Cimento 40523–593 (2017).

    CAS Google Scholar

  • Lutchyn, RM et al. Majorana zero modes in superconductor–semiconductor heterostructures. Nat. Rev. Mater. 352–68 (2018).

    Article ADS CAS Google Scholar

  • Prada, E. et al. From Andreev to Majorana bound states in hybrid superconductor–semiconductor nanowires. Nat. Rev. Phys. 2575–594 (2020).

    Article CAS Google Scholar

  • Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices. Science 3361003–1007 (2012).

    Article ADS CAS Google Scholar

  • Das, A. et al. Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys. 8887–895 (2012).

    Article CAS Google Scholar

  • Deng, MT et al. Majorana bound state in a coupled quantum-dot hybrid-nanowire system. Science 3541557–1562 (2016).

    Article ADS CAS Google Scholar

  • Nichele, F. et al. Scaling of Majorana zero-bias conductance peaks. Phys. Rev. Lett. 119136803 (2017).

    Article ADS Google Scholar

  • Vaitiekėnas, S. et al. Flux-induced topological superconductivity in full-shell nanowires. Science 367eaav3392 (2020).

    Article Google Scholar

  • Albrecht, SM et al. Exponential protection of zero modes in Majorana islands. Nature 531206–209 (2016).

    Article ADS CAS Google Scholar

  • Van Heck, B., Lutchyn, R. & Glazman, L. Conductance of a proximalized nanowire in the Coulomb blockade regime. Phys. Rev. B 93235431 (2016).

    Article ADS Google Scholar

  • Flensberg, K. Capacitance and conductance of dots connected by quantum point contacts. Physica B: Condens. Matter 203432–439 (1994).

    Article ADS CAS Google Scholar

  • Blonder, GE, Tinkham, M. & Klapwijk, TM Transition from metallic to tunneling regimes in superconducting microconstrictions: excess current, charge imbalance, and supercurrent conversion. Phys. Rev. B 254515–4532 (1982).

    Article ADS CAS Google Scholar

  • Little, WA & Parks, RD Observation of quantum periodicity in the transition temperature of a superconducting cylinder. Phys. Rev. Lett. 99–12 (1962).

    Article ADS Google Scholar

  • Vaitiekėnas, S., Krogstrup, P. & Marcus, CM Anomalous metallic phase in tunable destructive superconductors. Phys. Rev. B 101060507 (2020).

    Article ADS Google Scholar

  • Tuominen, MT, Hergenrother, JM, Tighe, TS & Tinkham, M. Experimental evidence for parity-based 2e periodicity in a superconducting single-electron tunneling transistor. Phys. Rev. Lett. 691997–2000 (1992).

    Article ADS CAS Google Scholar

  • Higginbotham, AP et al. Parity lifetime of bound states in a proximated semiconductor nanowire. Nat. Phys. 111017–1021 (2015).

    Article CAS Google Scholar

  • Hekking, FWJ, Glazman, LI, Matveev, KA & Shekhter, RI Coulomb blockade of two-electron tunneling. Phys. Rev. Lett. 704138–4141 (1993).

    Article ADS CAS Google Scholar

  • Hansen, EB, Danon, J. & Flensberg, K. Probing electron-hole components of subgap states in Coulomb blockaded Majorana islands. Phys. Rev. B 97041411 (2018).

    Article ADS CAS Google Scholar

  • San-Jose, P., Cayao, J., Prada, E. & Aguado, R. Majorana bound states from exceptional points in non-topological superconductors. Sci. Rep. 621427 (2016).

    Article ADS CAS Google Scholar

  • Avila, J., Peñaranda, F., Prada, E., San-Jose, P. & Aguado, R. Non-hermitian topology as a unifying framework for the Andreev versus Majorana states controversy. Commun. Phys. 2133 (2019).

    Article Google Scholar

  • Setiawan, F., Liu, C.-X., Sau, JD & Das Sarma, S. Electron temperature and tunnel coupling dependence of zero-bias and almost-zero-bias conductance peaks in majorana nanowires. Phys. Rev. B 96184520 (2017).

    Article ADS Google Scholar

  • Pendharkar, M. et al. Parity-preserving and magnetic field–resilient superconductivity in InSb nanowires with sn shells. Science 372508–511 (2021).

    Article ADS CAS Google Scholar

  • Kanne, T. et al. Epitaxial Pb on InAs nanowires for quantum devices. Nat. Nanotechnol. 16776–781 (2021).

    Article ADS CAS Google Scholar

  • Whiticar, A. et al. Coherent transport through a Majorana island in an Aharonov–Bohm interferometer. Nat. Commun. 113212 (2020).

    Article ADS CAS Google Scholar

  • het Veld, RLO et al. In-plane selective area InSb–Al nanowire quantum networks. Commun. Phys. 359 (2020).

    Article Google Scholar

  • Carrad, DJ et al. Shadow epitaxy for in situ growth of generic semiconductor/superconductor hybrids. Adv. Mater. 321908411 (2020).

    Article CAS Google Scholar

  • Shen, J. et al. Parity transitions in the superconducting ground state of hybrid InSb–Al Coulomb islands. Nat. Commun. 94801 (2018).

    Article ADS Google Scholar

  • Shen, J. et al. Full-parity phase diagram of a proximated nanowire island. Phys. Rev. B 104045422 (2021).

    Article ADS CAS Google Scholar

  • Valentini, M. et al. Nontopological zero-bias peaks in full-shell nanowires induced by flux-tunable Andreev states. Science 37382–88 (2021).

    Article ADS MathSciNet CAS MATH Google Scholar

  • Lee, EJH et al. Spin-resolved Andreev levels and parity crossings in hybrid superconductor-semiconductor nanostructures. Nat. Nanotechnol. 979–84 (2014).

    Article ADS CAS Google Scholar

  • Peñaranda, F., Aguado, R., San-Jose, P. & Prada, E. Even-odd effect and Majorana states in full-shell nanowires. Phys. Rev. Res. 2023171 (2020).

    Article Google Scholar

  • Krogstrup, P. et al. Epitaxy of semiconductor–superconductor nanowires. Nat. Mater. 14400–406 (2015).

    Article ADS CAS Google Scholar

  • Yu, B., Yuan, Y., Song, J. & Taur, Y. A two-dimensional analytical solution for short-channel effects in nanowire mosfets. IEEE Trans. Electron. Devices 562357–2362 (2009).

    Article Google Scholar

  • San-Jose, P. Quantica.jl: a quantum lattice simulation library in the Julia language (2021); https://doi.org/10.5281/zenodo.4762964.