Beenakker, C. Search for Majorana fermions in superconductors. Annu. Rev. of Condens. Matter Phys. 4113–136 (2013).
Aasen, D. et al. Milestones toward Majorana-based quantum computing. Phys. Rev. X 6031016 (2016).
Google Scholar
Aguado, R. Majorana quasiparticles in condensed matter. Rev. Nuovo Cimento 40523–593 (2017).
Lutchyn, RM et al. Majorana zero modes in superconductor–semiconductor heterostructures. Nat. Rev. Mater. 352–68 (2018).
Prada, E. et al. From Andreev to Majorana bound states in hybrid superconductor–semiconductor nanowires. Nat. Rev. Phys. 2575–594 (2020).
Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices. Science 3361003–1007 (2012).
Das, A. et al. Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys. 8887–895 (2012).
Deng, MT et al. Majorana bound state in a coupled quantum-dot hybrid-nanowire system. Science 3541557–1562 (2016).
Nichele, F. et al. Scaling of Majorana zero-bias conductance peaks. Phys. Rev. Lett. 119136803 (2017).
Vaitiekėnas, S. et al. Flux-induced topological superconductivity in full-shell nanowires. Science 367eaav3392 (2020).
Albrecht, SM et al. Exponential protection of zero modes in Majorana islands. Nature 531206–209 (2016).
Van Heck, B., Lutchyn, R. & Glazman, L. Conductance of a proximalized nanowire in the Coulomb blockade regime. Phys. Rev. B 93235431 (2016).
Flensberg, K. Capacitance and conductance of dots connected by quantum point contacts. Physica B: Condens. Matter 203432–439 (1994).
Blonder, GE, Tinkham, M. & Klapwijk, TM Transition from metallic to tunneling regimes in superconducting microconstrictions: excess current, charge imbalance, and supercurrent conversion. Phys. Rev. B 254515–4532 (1982).
Little, WA & Parks, RD Observation of quantum periodicity in the transition temperature of a superconducting cylinder. Phys. Rev. Lett. 99–12 (1962).
Vaitiekėnas, S., Krogstrup, P. & Marcus, CM Anomalous metallic phase in tunable destructive superconductors. Phys. Rev. B 101060507 (2020).
Tuominen, MT, Hergenrother, JM, Tighe, TS & Tinkham, M. Experimental evidence for parity-based 2e periodicity in a superconducting single-electron tunneling transistor. Phys. Rev. Lett. 691997–2000 (1992).
Higginbotham, AP et al. Parity lifetime of bound states in a proximated semiconductor nanowire. Nat. Phys. 111017–1021 (2015).
Hekking, FWJ, Glazman, LI, Matveev, KA & Shekhter, RI Coulomb blockade of two-electron tunneling. Phys. Rev. Lett. 704138–4141 (1993).
Hansen, EB, Danon, J. & Flensberg, K. Probing electron-hole components of subgap states in Coulomb blockaded Majorana islands. Phys. Rev. B 97041411 (2018).
San-Jose, P., Cayao, J., Prada, E. & Aguado, R. Majorana bound states from exceptional points in non-topological superconductors. Sci. Rep. 621427 (2016).
Avila, J., Peñaranda, F., Prada, E., San-Jose, P. & Aguado, R. Non-hermitian topology as a unifying framework for the Andreev versus Majorana states controversy. Commun. Phys. 2133 (2019).
Setiawan, F., Liu, C.-X., Sau, JD & Das Sarma, S. Electron temperature and tunnel coupling dependence of zero-bias and almost-zero-bias conductance peaks in majorana nanowires. Phys. Rev. B 96184520 (2017).
Pendharkar, M. et al. Parity-preserving and magnetic field–resilient superconductivity in InSb nanowires with sn shells. Science 372508–511 (2021).
Kanne, T. et al. Epitaxial Pb on InAs nanowires for quantum devices. Nat. Nanotechnol. 16776–781 (2021).
Whiticar, A. et al. Coherent transport through a Majorana island in an Aharonov–Bohm interferometer. Nat. Commun. 113212 (2020).
het Veld, RLO et al. In-plane selective area InSb–Al nanowire quantum networks. Commun. Phys. 359 (2020).
Carrad, DJ et al. Shadow epitaxy for in situ growth of generic semiconductor/superconductor hybrids. Adv. Mater. 321908411 (2020).
Shen, J. et al. Parity transitions in the superconducting ground state of hybrid InSb–Al Coulomb islands. Nat. Commun. 94801 (2018).
Shen, J. et al. Full-parity phase diagram of a proximated nanowire island. Phys. Rev. B 104045422 (2021).
Valentini, M. et al. Nontopological zero-bias peaks in full-shell nanowires induced by flux-tunable Andreev states. Science 37382–88 (2021).
Lee, EJH et al. Spin-resolved Andreev levels and parity crossings in hybrid superconductor-semiconductor nanostructures. Nat. Nanotechnol. 979–84 (2014).
Peñaranda, F., Aguado, R., San-Jose, P. & Prada, E. Even-odd effect and Majorana states in full-shell nanowires. Phys. Rev. Res. 2023171 (2020).
Krogstrup, P. et al. Epitaxy of semiconductor–superconductor nanowires. Nat. Mater. 14400–406 (2015).
Yu, B., Yuan, Y., Song, J. & Taur, Y. A two-dimensional analytical solution for short-channel effects in nanowire mosfets. IEEE Trans. Electron. Devices 562357–2362 (2009).
San-Jose, P. Quantica.jl: a quantum lattice simulation library in the Julia language (2021); https://doi.org/10.5281/zenodo.4762964.